Trade-off Analysis between Security Policies for Java Mobile Codes and Requirements for Java Application

Haruhiko Kaiya
Shinshu University, JAPAN
Sep. 11, 2003
http://www.cs.shinshu-u.ac.jp/~kaiya/
Background and Motivation

• Mobile codes are useful,
 – e.g., constructing services on the fly, reuse.
• but sometimes dangerous.
 – e.g., threats to valuable resources.
• Requirements Analysis Method for Mobile codes applications is needed.
• First step
 – Java mobile codes only, for simplicity.
 – Security policies.
Role of Security Policies in Java

• Restrict the functions of mobile codes.

• Incomplete Policies.
 – allow inadequate and/or malicious functions
 – hard to find them – anti-requirements, which show ‘something should not happen!’.

• Complete Policies for Java.
 – cannot avoid inadequate/malicious functions completely,
 – because access controls are applied not to each code but to each location.
Research Issue and Strategy

• Get feasible requirements specification
 – for an application using Java mobile codes
 – under an environment.
 • An environment means security policies, functions of each mobile code, and deployment of mobile codes.

• Compromise differences between goals for application users and the environment.
 – Abandon several goals for application users so as to meet the environment, if possible.
 – Modify several parts of the environment so as to meet the goals, if possible.
Descriptions of security policies, codes’ features and deployment of codes.

Environment Description

First step

Enabled Functions Table

Goal Hierarchy

Last step

2nd step

Required Functions Table

Conflicts and Vagueness

What can be happened under the environment.

Ideal needs of customers. ‘What they really want?’

What are wanted and/or needed to be happened by the goals.
Environment and Enabled Functions

Environment
(deployment and policies and code functions)

A Code X can handle a Resources Y.

// Policies for Java
grand codeBase
“heep://www.a.b/staff/” {
 permission java.io.FilePermission{
 “/answer/*”, “read”;
 permission
}

<table>
<thead>
<tr>
<th>Resources</th>
<th>Teacher</th>
<th>Admin.</th>
<th>CoLearner</th>
<th>Learner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answer</td>
<td>r+ w-</td>
<td>r+ w-</td>
<td>-</td>
<td>r+ w+</td>
</tr>
<tr>
<td>Score</td>
<td>r+ w+</td>
<td>r+ w+</td>
<td>-</td>
<td>r+ w-</td>
</tr>
<tr>
<td>Remark</td>
<td>r+ w+</td>
<td>r+ w+</td>
<td>r+ w+</td>
<td>r+ w+</td>
</tr>
</tbody>
</table>
Goals and Required Functions

- Participate e-learning
- Learner answers the question
- Learner reads his/her own score
- Staff scores the answers
- encourage collaboration among the learners
- know the result of learning
- co-leaners read and write the remarks

Users want a **Code X** to Handle a **Resource Y**.

<table>
<thead>
<tr>
<th></th>
<th>Teacher</th>
<th>Admin.</th>
<th>CoLearner</th>
<th>Learner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answer</td>
<td>r+ w-</td>
<td>-</td>
<td>-</td>
<td>r+ w+</td>
</tr>
<tr>
<td>Score</td>
<td>r+ w+</td>
<td>r+ w-</td>
<td>-</td>
<td>r+ w-</td>
</tr>
<tr>
<td>Remark</td>
<td>r+ w+</td>
<td>?</td>
<td>r+ w+</td>
<td>r+ w+</td>
</tr>
</tbody>
</table>
Conflicts and Vagueness

Goals

Required Functions

<table>
<thead>
<tr>
<th></th>
<th>Teacher</th>
<th>Admin.</th>
<th>CoLearner</th>
<th>Learner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answer</td>
<td>r+ w-</td>
<td>-</td>
<td>-</td>
<td>r+ w+</td>
</tr>
<tr>
<td>Score</td>
<td>r+ w+</td>
<td>r+ w-</td>
<td>-</td>
<td>r+ w-</td>
</tr>
<tr>
<td>Remark</td>
<td>r+ w+</td>
<td>?</td>
<td>r+ w+</td>
<td>r+ w+</td>
</tr>
</tbody>
</table>

Conflicts

Compare

<table>
<thead>
<tr>
<th></th>
<th>both in Staff.class</th>
<th>Teacher</th>
<th>Admin.</th>
<th>CoLearner</th>
<th>Learner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Answer</td>
<td>r+ w-</td>
<td>r+ w-</td>
<td>-</td>
<td>-</td>
<td>r+ w+</td>
</tr>
<tr>
<td>Score</td>
<td>r+ w+</td>
<td>r+ w+</td>
<td>-</td>
<td>-</td>
<td>r+ w-</td>
</tr>
<tr>
<td>Remark</td>
<td>r+ w+</td>
<td>r+ w+</td>
<td>r+ w+</td>
<td>r+ w+</td>
<td></td>
</tr>
</tbody>
</table>

Vagueness

Enabled Functions
Supporting Tools

• Goal Oriented Requirements Analysis.
 – decompose and convert abstract goals to concrete goals (functions).
 – Get required functions.

• Security Policy Checker and Generator.
 – check which code can be executed or not under an environment.
 – Get enabled functions.
Current and Next Works

• Current
 – A method has been designed.
 – CASE tools are partially implemented.

• Next
 – Completing and integrating tools.
 – Finding realistic examples for our method.
Future Works

• Support *user-centric style* access control.
 – ‘Who runs the application?’
 – JASS (Java Authentication & Authorization Services)
 – Now *code-centric style* only.

• Beyond the security mechanism for Java.
 – too simple to be used in general.

• Handle conflicts among stakeholders.
 – AGORA